jueves, 4 de noviembre de 2010

3.2 FUERZA Y PESO

fuerza:
En física, la fuerza es una magnitud física que mide la intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas (en lenguaje de la física de partículas se habla de interacción). Según una definición clásica, fuerza es toda causa agente capaz de modificar la cantidad de movimiento o la forma de los cuerpos materiales. No debe confundirse con los conceptos de esfuerzo o de energía.
En el Sistema Internacional de Unidades, la fuerza se mide en newtons (N).
La fuerza es una modelización matemática de intensidad de las interacciones, junto con la energía. Así por ejemplo la fuerza gravitacional es la atracción entre los cuerpos que tienen masa, el peso es la atracción que la tierra ejerce sobre los objetos en las cercanías de su superficie, la fuerza elástica es el empuje o tirantez que ejerce un resorte comprimido o estirado respectivamente, etc. En física hay dos tipos de ecuaciones de fuerza: las ecuaciones "causales" donde se especifica el origen de la atracción o repulsión: por ejemplo la ley de la gravitación universal de Newton o la ley de Coulomb y las ecuaciones de los efectos (la cual es fundamentalmente la segunda ley de Newton).
La fuerza es una magnitud física de carácter vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo o la dirección de su velocidad) o bien de deformarlo.
Comúnmente nos referimos a la fuerza aplicada sobre un objeto sin tener en cuenta al otro objeto u objetos con los que está interactuando y que experimentarán, a su vez, otras fuerzas. Actualmente, cabe definir la fuerza como un ente físico-matemático, de carácter vectorial, asociado con la interacción del cuerpo con otros cuerpos que constituyen su entorno.

"Fuerza" gravitatoria
En la teoría de la relatividad general el campo gravitatorio no se trata como un campo de fuerzas real, sino como un efecto de la curvatura del espacio-tiempo. Una partícula másica que no sufre el efecto de ninguna otra interacción que la gravitatoria seguirá una trayectoria geodésica de mínima curvatura a través del espacio-tiempo, y por tanto su ecuación de movimiento será:
\cfrac{d^2 x^\mu}{ds^2} + \sum_{\sigma,\nu} \Gamma_{\sigma \nu}^{\mu} \cfrac{dx^\sigma}{ds}\cfrac{dx^\nu}{ds} = 0
Donde:
x^\mu\, son las coordenadas de posición de la partícula.
s\, el parámetro de arco, que es proporcional al tiempo propio de la partícula.
\Gamma_{\sigma\nu}^\mu\, son los símbolos de Christoffel correspondientes a la métrica del espacio-tiempo.
La fuerza gravitatoria aparente procede del término asociado a los símbolos de Christoffel. Un observador en "caída libre" formará un sistema de referencia en movimiento en el que dichos símbolos de Christoffel son nulos, y por tanto no percibirá ninguna fuerza gravitatoria tal como sostiene el principio de equivalencia que ayudó a Einstein a formular sus ideas sobre el campo gravitatorio.

[editar] Fuerza electromagnética

El efecto del campo electromagnético sobre una partícula relativista viene dado por la expresión covariante de la fuerza de Lorentz:
f_{\alpha} = \sum_{\beta} q \ F_{\alpha \beta} \ u^{\beta} \,
Donde:
f_\alpha\, son las componentes covariantes de la cuadrifuerza experimentada por la partícula.
F_{\alpha\beta}\, son las componentes del tensor de campo electromagnético.
u^\alpha\, son las componentes de la cuadrivelocidad de la partícula.
La ecuación de movimiento de una partícula en un espacio-tiempo curvo y sometida a la acción de la fuerza anterior viene dada por:
m\frac{Du^\mu}{D\tau} = m\left (\cfrac{d^2 x^\mu}{d\tau^2} +
\Gamma_{\sigma \nu}^{\mu} \cfrac{dx^\sigma}{d\tau}\cfrac{dx^\nu}{d\tau} \right)
= f^\mu
Donde la expresión anterior se ha aplicado el convenio de sumación de Einstein para índices repetidos, el miembro de la derecha representa la cuadriaceleración y siendo las otras magnitudes:
  1. f^\mu = g^{\mu\alpha}f_\alpha\, son las componentes contravarianetes de la cuadrifuerza electromagnética sobre la partícula.
  2. m\, es la masa de la partícula.
  3. La fuerza o interacción nuclear fuerte es la que mantiene unidos los componentes de los núcleos atómicos, y actúa indistintamente entre dos nucleones cualesquiera, protones o neutrones. Su alcance es del orden de las dimensiones nucleares, pero es más intensa que la fuerza electromagnética.
  4. La fuerza o interacción nuclear débil es la responsable de la desintegración beta de los neutrones; los neutrinos son sensibles únicamente a este tipo de interacción (aparte de la gravitatoria,

Peso

De Wikipedia, la enciclopedia libre
Para la divisa así llamada, véase Peso (moneda).
Diagrama de fuerzas que actúan sobre un cuerpo de masa m en reposo sobre una superficie horizontal.
En física, el peso de un cuerpo es una magnitud vectorial, el cual se define como la fuerza con la cual un cuerpo actúa sobre un punto de apoyo, a causa de la atracción de este cuerpo por la fuerza de la gravedad.
La situación más corriente, es la del peso de los cuerpos en las proximidades de la superficie de un planeta como la Tierra, o de un satélite. El peso de un cuerpo depende de la intensidad del campo gravitatorio y de la masa del cuerpo. En el Sistema Internacional de Magnitudes se establece que el peso, cuando el sistema de referencia es la Tierra, comprende no solo la fuerza gravitatoria local, sino también la fuerza centrífuga local debida a la rotación; por el contrario, el empuje atmosférico no se incluye.[1]
En las proximidades de la Tierra, todos los objetos materiales son atraídos por el campo gravitatorio terrestre, estando sometidos a una fuerza (peso en el caso de que estén sobre un punto de apoyo) que les imprime un movimiento acelerado, a menos que otras fuerzas actúen sobre el cuerpo.


No hay comentarios:

Publicar un comentario